2 research outputs found

    Predicting user behavior using data profiling and hidden Markov model

    Get PDF
    Mental health disorders affect many aspects of patient’s lives, including emotions, cognition, and especially behaviors. E-health technology helps to collect information wealth in a non-invasive manner, which represents a promising opportunity to construct health behavior markers. Combining such user behavior data can provide a more comprehensive and contextual view than questionnaire data. Due to behavioral data, we can train machine learning models to understand the data pattern and also use prediction algorithms to know the next state of a person’s behavior. The remaining challenges for this issue are how to apply mathematical formulations to textual datasets and find metadata that aids to identify the person’s life pattern and also predict the next state of his comportment. The main idea of this work is to use a hidden Markov model (HMM) to predict user behavior from social media applications by analyzing and detecting states and symbols from the user behavior dataset. To achieve this goal, we need to analyze and detect the states and symbols from the user behavior dataset, then convert the textual data to mathematical and numerical matrices. Finally, apply the HMM model to predict the hidden user behavior states. We tested our program and identified that the log-likelihood was higher and better when the model fits the data. In any case, the results of the study indicated that the program was suitable for the purpose and yielded valuable data

    Discounted Markov Decision Processes with Constrained Costs: the decomposition approach

    No full text
    In this paper we consider a constrained optimization of discrete time Markov Decision Processes (MDPs) with finite state and action spaces, which accumulate both a reward and costs at each decision epoch. We will study the problem of finding a policy that maximizes the expected total discounted reward subject to the constraints that the expected total discounted costs are not greater than given values. Thus, we will investigate the decomposition method of the state space into the strongly communicating classes for computing an optimal or a nearly optimal stationary policy. The discounted criterion has many applications in several areas such that the Forest Management, the Management of Energy Consumption, the finance, the Communication System (Mobile Networks) and the artificial intelligence
    corecore